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Abstract This paper is concerned with the application of radial basis function networks
(RBFNs) as interpolation functions for all boundary values in the boundary element method
(BEM) for the numerical solution of heat transfer problems. The quality of the estimate of
boundary integrals 1s greatly affected by the type of functions wused to interpolate the
temperature, its normal derivative and the geometry along the boundary from the nodal values.
In this paper, instead of conventional Lagrange polynomials, interpolation functions
representing these variables are based on the “umiversal approximator” RBFNs, resulting in
much better estimates. The proposed method is verified on problems with different variations of
temperature on the boundary from linear level to higher orders. Numerical results obtained
show that the BEM with indirect RBFN (IRBFN) interpolation performs much better than the
one with linear or quadratic elements in terms of accuracy and convergence rate. For example,
for the solution of Laplace’s equation in 2D, the BEM can achieve the norm of error of the
boundary solution of O(10~°) by using IRBEN interpolation while quadratic BEM can achieve
a norm only of O(10~%) with the same boundary points employed. The IRBFN-BEM also
appears to have achieved a higher efficiency. Furthermore, the convergence rates are of
O(1"%%) and O(h*"®) for the quadratic BEM and the IRBFN-based BEM, respectively, where h
is the nodal spacing.

1. Introduction

Boundary element methods (BEMs) have become one of the popular techniques
for solving boundary value problems in continuum mechanics. For linear
homogeneous problems, the solution procedure of BEM consists of two main
stages:

(1) estimate the boundary solution by solving boundary integral equations
(BIEs), and

(2) estimate the internal solution by calculating the boundary integrals (Bls)
using the results obtained from the stage (1).
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The first stage plays an important role, because the solution obtained here
provides sources to compute the internal solution. However, it can be seen that
both stages involve the evaluation of Bls, of which any improvements achieved
result in the betterment of the overall solution to the problem. In the evaluation
of Bls, the two main topics of interest are how to represent the variables along
the boundary adequately and how to evaluate the integrals accurately,
especially in the cases where the moving field point coincides with the source
point (singular integrals). In the standard BEM (Banerjee and Butterfield, 1981;
Brebbia et al., 1984), the boundary of the domain of analysis is divided into a
number of small segments (elements). The geometry of an element and the
variation of temperature and temperature gradient over such an element are
usually represented by Lagrange polynomials, of which the constant, linear
and quadratic types are the most widely applied. With regard to the evaluation
of integrals, including weakly and strongly singular integrals, considerable
achievements have been reported by Sladek and Sladek (1998). It is observed
that the accuracy of solution by the standard BEM greatly depends on the type
of elements used. On the other hand, neural networks (NN) which deal with
interpolation and approximation of functions, have been developed recently
and become one of the main fields of research in numerical analysis (Haykin,
1999). It has been proved that the NNs are capable of universal approximation
(Cybenko, 1989; Girosi and Poggio, 1990). Interest in the application of NNs
(especially the multiquadric (MQ) radial basis function networks (RBFNs)) for
numerical solution of PDEs has been increasing (Kansa, 1990; Mai-Duy and
Tran-Cong, 2001a, b, 2002; Sharan et al., 1997; Zerroukat et al., 1998). In this
study, “universal approximator” RBFNs are introduced into the BEM scheme
to represent the variables along the boundary. Although RBFNs have an
ability to represent any continuous function to a prescribed degree of
accuracy, practical means to acquire sufficient approximation accuracy still
remain an open problem. Indirect RBFNs (IRBFNs) which perform better than
direct RBFNs in terms of accuracy and convergence rate (Mai-Duy and
Tran-Cong, 2001a, 2002) are utilised in this work. Due to the presence of NNs in
Bls, the treatment of the singularity in CPV integrals requires some
modification in comparison with the standard BEM. The paper is organised as
follows. In Section 2, the IRBFN interpolation of functions is presented and its
performance is then compared with linear and quadratic element results via
a numerical example. Section 3 is to introduce the IRBFN interpolation into
the BEM scheme to represent the variable in BIEs. In Section 4, some
2D heat transfer problems governed by Laplace’s or Poisson’s equations are
simulated to validate the proposed method. Section 5 gives some concluding
remarks.

2. Interpolation with IRBFN
The task of interpolation problems is to estimate a function y(s) for arbitrary s
from the known value of ¥(s) at a set of points s, s®. ... s and therefore,



the interpolation must model the function by some plausible functional form.
The form is expected to be sufficiently general in order to describe large classes
of functions which might arise in practice. By far the most common functional
forms used are based on polynomials (Press et al, 1988). Generally, for
problems of interpolation, universal approximators are highly desired in order
to handle large classes of functions. It has been proved that RBFNs, which can
be considered as approximation schemes, are able to approximate arbitrarily
well continuous functions (Girosi and Poggio, 1990). The function y to be
interpolated/approximated is decomposed into radial basis functions as

v = fn) =Y wg®w), 1)
i=1

where m 1s the number of radial basis functions, {g (”} _, 1s the set of chosen
radial basis functions and {w®}., is the set of Welghts to be found.
Theoretically, the larger the number of radial basis functions used, the more
accurate the approximation will be as, stated in Cover’s theorem (Haykin, 1999).
However, the difficulty here is how to choose the network’s parameters such as
RBF widths properly. IRBFNs were found to be more accurate than direct
RBFNs with relatively easier choice of RBF widths (Mai-Duy and Tran-Cong,
2001a, 2002) and will be employed in the present work. In this paper, only the
problems in 2D are discussed. In view of the fact that the interpolation IRBFN
method will be coupled later with the BEM where the problem dimensionality
is reduced by one, only the MQ-IRBFN for function and its derivatives (e.g. up
to the second order) in 1D needs to be employed here and its formulation is
briefly recaptured as follows:

2'6s) = f1(s) =Y we), )
i=1
y'(s) =) =Y wHYs) +Cy, 3)
=1
y(s) = f(9) = > w?Hs)+ Cis + Co, 4)

=1

where s is the curvilinear coordinate (arclength), C; and C, are constants of
integration and

g0 = (s = ¢ +a"'”?, 5)
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in which {c¢®}", is the set of centres and {a®}, is the set of RBF widths.
The RBF width is chosen based on the following simple relation

((S _ C(i))z +a(i)2)1/2’

a9 = Bd,

where B is a factor and d © is the minimum arclength between the ith centre
and its neighbouring centres. Since C; and Cs are to be found, it is convenient to
let w™*D =C;, w™? =Cy, H”D =5 and H”® =1 in equation (4),
which becomes

m+2 o
ys) = f) =Y w®Hs), ®)
=1
H® =RHS of equation (7), i=1,...,m, 9)
A =, (10)
HOD =1, (11)

The detailed implementation and accuracy of the IRBFN method were reported
previously (Mai-Duy and Tran-Cong, 2002). In all the numerical examples
carried out in this paper, the value of B is simply chosen to be in the range of
7-10. Before introducing the IRBFN interpolation into the BEM scheme, the
performance of the IRBFN and element-based method are compared using the
interpolation of the following function



y=0.02(12 4+ 3s — 3.55% + 7.25%)(1 4 cos 4s)(1 + 0.8 sin 37s),

where 0 = s =1 (Figure 1). The accuracy achieved by each technique is
evaluated via the norm of relative error of the solution N, defined by

q _ _ 1/2

> (D) = f(sD))

Ne= [ EL— : 12)
> W(s®Y
=1

where y(s @) and f(s ©’) are the exact and approximate solutions at the point 7,
respectively, and ¢ is the number of test points. The performance of linear,
quadratic and IRBFN interpolations are assessed using four data sets of 13, 15,
17 and 19 known points. For each data set, the function y is estimated at 500
test points. Note that the known and test points here are uniformly distributed.
The results obtained using 8 = 10 are displayed in Figure 2 showing that the
IRBFN method achieves superior accuracy and convergence rate to the
element-based method. The solution converges apparently as O(z %), O(h %)
and O(/ **") for linear, quadratic and IRBFN interpolations, respectively, where
h 1s the grid point spacing. At 2 = 0.06, which corresponds to a set of 19 grid

0.9 T T T T T T T
0.8+ Key
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Figure 2.

Interpolation of function
y=0.02(12+3x —

3.5x 247.2x %)(1+cos 4mx)
(1+0.8 sin 37x). The rate
of convergence with grid
point spacing refinement.
The solution conve]rggses
apparently as Oz ),
O 8 and O(h **) for
linear, quadratic and
IRBEN interpolations,
respectively, where 7 is
the grid point spacing
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points, the error norms obtained are 4.06e — 2, 1.81¢ — 2 and 1.98¢ — 4 for
linear, quadratic and IRBFN schemes, respectively.

3. A new interpolation method for the evaluation of Bls
For heat transfer problems, the governing equations take the form

Vu=0b, x€EQ, (13)

u=u, x€ET,, (14)
ou  _

QEEZQ) Xerqv (15)

where u 1s the temperature, ¢ is the temperature gradient across the surface,
n is the unit outward normal vector, # and ¢ are the prescribed boundary
conditions, b is a known function of position and I' = I',, 4 T'; is the boundary
of the domain ().

Integral equation (IE) formulations for heat transfer problems are well
documented in a number of texts (Banerjee and Butterfield, 1981; Brebbia et al.,
1984). Equations (13)-(15) can be reformulated in terms of the IEs for a given
spatial point £ as follows



(Ou® + / ¢* (& () dT + / bOow* (£,2) dQ
T Q

- / W (& X)g() dT, (16)

r

where #* is the fundamental solution to the Laplace equation, e.g. for a 2D
isotropic domain #* = (1/2m)In(1/7) in which 7 is the distance from the point &
to the current point of integration x, ¢* = du* /on, c(§) = 6/2m with 6 being
the internal angle of the corner in radians, if £is a boundary point and ¢(§) = 1,
if £1s an internal point. Note that the volume integral here does not introduce
any unknowns because the function b is given and furthermore, it can be
reduced to the Bls by using the particular solution (PS) techniques (Zheng et al,
1991) or the dual reciprocity method (DRM) (Partridge ef al., 1992). Without loss
of generality, the following discussions are based on equation (16) with b = 0
(Laplace’s equation).

For the standard BEM, the numerical procedure for equation (16) involves a
subdivision of the boundary I' into a number of small elements. On each
element, the geometry and the variation of # and ¢ are assumed to have a
certain shape such as linear and quadratic ones. The study on the interpolation
of function in Section 2 shows that the IRBFN interpolation achieves an
accuracy and convergence rate superior to the linear and quadratic
element-based interpolations. The question here is whether the employment
of IRBFN interpolation in the BEM scheme can improve the solution in terms of
accuracy and convergence rate as in the case of function approximation. The
answer is positive and substantiated in the remainder of this paper.

The first issue to be considered is about the implementation of singular
integrals when IRBFNs are present within integrands. The difference between
the IRBFN and the Lagrange-type interpolation is that in the present IRBFN
interpolation, none of the basis functions are null at the singular point
(the point_ where the field point x and the source point ¢ coincide) and hence
the corresponding integrands obtained are not regular. Consequently, at the
singular point all CPV integrals associated with the IRBFN weights are
singular and cannot be evaluated by using the hypothesis of constant potential
directly over the whole domain as in the case of the standard BEM. To
overcome this difficulty, the treatment of singular CPV integrals needs to be
slightly modified. The BIEs can be written in the following form (Hwang et al,
2002; Tanaka et al., 1994)

wd [ ¢ @Exndr+CPV / (& Du() dr = / W (& Dg@ dr, (17)
Tye—0 r r

where I', is part of a circle that excludes its origin (or the singular point) from
the domain of analysis. Assume that the temperature «(x) is a constant unit on
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the whole domain, ie. u(é) = u(x) =1, and hence the gradient g¢(x) is
everywhere zero. Equation (17) then simplifies to

/ gF (& x)dl = —CPV/q*(f,x) dr. 18)
T.,e—0 r

Substitution of equation (18) into equation (17) yields

Cpv / q* (& 0)(u(x) — u(é)dl’ = / w* (& x)q(x)dl. 19)
r T

The CPV integral is now written in the non-singular form, where the standard
Gaussian quadrature can be applied. For weakly singular integrals, some
well-known treatments such as logarithmic Gaussian quadrature and Telles’
transformation technique (Telles, 1987) can be applied directly as in the case of
the standard BEM.

The second issue is concerned with the employment of the IRBFNs in the
BEM scheme to represent the variables in the Bls. In the present method, the
boundary I" of the domain of analysis is also divided into a number of segments
N, 1e.

=

Ny
I;,

j=1

which are 1D domains to be represented by networks. Note that the size of the
segment I'; can be much larger than the size of elements in the standard BEM
provided that the associated boundary is smooth and the prescribed boundary
conditions are of the same type. Equation (19) can be written in the discretised
form as

Ny Ne
> [ @num - wenar =Y [ wengmadn, @
=1 7L =1 YL
where the subscript j denotes the general segments and the subscript / indicates
the segment containing the source point & The variation of temperature # and
gradient g on the segment I'; is now represented by the IRBFNs in terms of the
curvilinear coordinate s as (equation (9))

mj+2

uj=" wH" (), (21)
=1



m+2 0
rr(l
="y w)H" ), (22)
=1
where s E [, mj+2 is the number of IRBFN weights, {w(l)} ]+2 and

are the sets of weights of networks for the tempera re u an
{@} the sets of weights of networks for the t tun d
temperature gradient ¢, respectlvely Similarly, the geometry can be
interpolated from the nodal value by using the IRBFNs as

mj+2 "
X = Z w%H (s), (23)
i=1
mj+2 0
3
= " wl Hs). (24)
i=1

Substitution of equations (21) and (22) into equation (20) yields

ml+2 .
Z / 7 (&s)(Z wH(s) - Zw(lﬂ")(a) dr;

, (25)
mj+ N
- Z / w* (€, s)( ((;]?H].“(s)> dr;,

or,

N. (mj+2 mi+2 o
{Z wl) (/ g 0s) dr) - 2w (/ ¢ (& 9H,©) drf’) }
=1 I

=1 i=

(26)

Ns mj+
Z Z ) ( / w* (€ B (s) dr>
j=1 i=1

where my is the number of training points on the segment 7, which can vary
from segment to segment. Equation (26) is formulated in terms of the IRBFN
weights of networks for # and g rather than the nodal values of # and ¢ as in the
case of the standard BEM. Locating the source point £ at the boundary training
points results in the underdetermined system of algebraic equations with the
unknown being the IRBFN weights. Thus, the system of equations obtained,
which can have many solutions, needs to be solved in the general least squares
sense. The preferred solution is the one whose values are smallest in the least
squares sense (i.e. the norm of components is minimum). This can be achieved
by using singular value decomposition technique (SVD). The procedural flow
chart can be briefly summarised as follows:
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(1) divide the boundary into a number of segments over each of which the
boundary is smooth and the prescribed boundary conditions are of the
same type;

(2) apply the IRBFN for approximation of the prescribed physical boundary
conditions in order to obtain the IRBFN weights which are the boundary
conditions in the weight space;

() form the system matrices associated with the IRBFN weights w,, and w,;

(4) impose the boundary conditions obtained from the step 2 and then solve
the system for IRBFN weights by the SVD technique;

(5) compute the boundary solution by using the IRBFN interpolation;
(6) evaluate the temperature and its derivatives at selected internal points;
(7) output the results.

Note that for the numerical solution of Poisson’s equations using the BEM-PS
approach, the PS is first found by expressing the known function b as a linear
combination of radial basis functions and the volume integral is then
transformed into the Bls (Zheng et al., 1991). However, the first stage of this
process produces a certain error which is separate from the error in the
evaluation of the Bls. In order to confine the error of solution only to the
evaluation of Bls, the following numerical examples of heat transfer problems
governed by the Laplace’s equations or Poisson’s equations are chosen where
the associated analytical PSs exist for the latter.

4. Numerical examples

In this section, the proposed method is verified and compared with the
standard BEM on heat transfer problems governed by the Laplace’s or
Poisson’s equations. In order to make the BEM programs general in the sense
that they can deal with any types of boundary conditions at the corners, all
BEM codes with linear, quadratic and IRBFN interpolations employ
discontinuous elements at the corner. The extreme boundary point at the
corner 1s shifted into the element by one-fourth of the length of the element.
Integrals are evaluated by using the standard Gaussian quadrature for regular
cases and logarithmic Gaussian quadrature or Telles’ quadratic transformation
(Telles, 1987) for weakly singular cases with nine integration points. For the
purpose of error estimation and convergence study, the error norm defined in
equation (12) will be utilised here with the function y being the temperature «
and its normal derivative ¢ in the case of the boundary solution or the
temperature # in the case of the internal solution.

4.1 Boundary geometry with straight lines
It can be seen that the linear interpolation is able to represent exactly the
geometry for a straight line and hence on the straight line segment the IRBFN



interpolation needs only to be used for representing the variation of
temperature and gradient.

4.1.1 Example 1. Consider a square closed domain whose dimensions are
taken to be 6 by 6 units as shown in Figure 3. The temperature on the left and
right edges is maintained at 300 and 0, respectively, while the homogeneous
Neumann conditions ¢ = 0 are imposed on the other edges. Inside the square,
the steady-state temperature satisfies the Laplace’s equation. The analytical
solution is

u(x1,x9) = 300 — 50x;.

This is a simple problem where the variation of temperature is linear. It can be
seen that the use of linear interpolation is the best choice for this problem. Both
linear and IRBFN (B = 10) interpolations are employed and the corresponding
BEM results on the boundary and at some internal points are displayed in
Table I showing that the proposed method as well as the linear-BEM works.
Significantly, the IRBFN-BEM works increasingly better than the linear-BEM
as the number of boundary points increases, which seems to indicate that the
IRBFN-BEM does not suffer numerical ill-conditioning as in the case of
the standard BEM. Note that in the case of the IRBFN interpolation, each
edge of the square domain and the boundary points on it become the
domain and training points of the network associated with the edge,
respectively. It is expected that the IRBFN-BEM approach performs better in
dealing with higher order variations of temperature, which is verified in the
following examples.

T2

u = 300

Z
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Table 1.

Example 1 — error
norms N,s of the
IRBFN-BEM and
linear-BEM
solutions

4.1.2 Example 2. The problem is to find the temperature field such that

V2u =0 inside the square 0 =x; =, 0=ux, = 7, 27
u(x1,m =sin(x;) on the top edge (0 = x; = m), (28)
u(x1,x2) =0 on the other three sides. (29)

The exact solution of this problem is given by Snider (1999)

w(x1, X9) = sin(x7) sinh(xs).

1
sinh(r)
This is a Dirichlet problem for which the essential boundary condition is
imposed along the boundary. Using discontinuous boundary elements at
the corner for the case of the standard BEM or shifting the training points at the
corner into the adjacent segments for the case of the IRBFN-BEM allows the
correct description of multi-valued gradient ¢ at the corner. In the case of
IRBFN interpolation, each side of the square domain becomes the domain of
network and the boundary points on it are utilised as training points. To study
the convergence of the present method, four boundary point densities, namely
5% 4,7%x4,9%x4and 11 X 4, and B = 7 are employed. Some internal points are
selected at (@/3,7/3), (7/3,27w/3), (w/2,7/2), (2m/3,w/3) and
(27/3,2m/3). The performance of the BEM with linear, quadratic and
IRBFN interpolations is assessed using the error norms of the boundary
and internal solution. The boundary solution is displayed in Figure 4 showing
that the proposed method is the most accurate one with higher convergence
rate achieved. With these §1ven boundary point densities, the solution
converges as O(h %%, O(h %) and O(h>®) for linear, quadratlc and IRBFN
interpolations, respectively. At h = 0.31, which corresponds to the boundary
point density of 11 X4, error norms obtained are 1.27¢ — 2, 1.17¢ — 2

Boundary points 3x4 4x4 5%x4 6x4
Linear elements 8 12 16 20
Error norm of the boundary solution

Linear-BEM 30le =7 308 — 7 372¢ — 7 4.30e — 7
IRBFN-BEM 7.22¢ — 6 117¢ — 6 433¢ -7 1.60e — 7
Error norm of the internal solution

Linear-BEM 1.86e — 7 143e — 7 1.22¢ — 7 1.07¢ — 7
IRBFN-BEM 397¢ — 6 407e — 7 157¢ — 7 517¢ — 8

Note: The selected internal points are (2, 2), (2, 4), (3, 3), 4, 2) and (4, 4). In the first row, n X m
means 7 boundary points per segment and 7 segments. The number of boundary elements in
each case results in the same total number of boundary points




and 2.80¢ — 5 for linear, quadratic and IRBFN interpolations, respectively.
The internal results are recorded in Table II showing that the IRBFN-BEM
achieves a solution accuracy better than the linear/quadratic-BEM results by
several orders of magnitude.

4.1.3 Example 3. The problem is to find the temperature field such that

V2u =0 inside the square 0 = x = 7,0 < x5 = m, (30)
u(m, x9) = sin®(x2) on the right edge (0 < x3 = m), (31)
u(x1,%2) =0 on the other three sides. (32)
The analytical solution of this problem (Snider, 1999) is
3 1
_ 3 h 1 h '
u(x1,x2) Tsmh(m) sin(x) sinh(x;) TsmhGm) sin(3x2) sinh(3x7)

The shape of this solution is more complicated than the one in the previous
example and provides a good test for the present method. The boundary point

10
Key
O IRBFN
10k O quadratic |
A linear
107} .
=
-3
107 ¢ o E
10*E o ]
©)
5

10
h

Note: With the given boundary point densities of 5 x 4,7 x 4,9 x 4 and 11 x 4, the rate of convergence
appears to be O(h*?*), O(K*%*) and O(4>*#3) for linear, quadratic and IRBFN interpolations, respectively,
as depicted by solid lines. The proposed method achieves accuracy and convergence rate superior to the
element-based method
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Example 2 — error norm
N, of the boundary
solution versus
boundary point spacing
) obtained by the BEM
with different
interpolation techniques
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densities are chosen to be 9 X 4, 11 X 4, 13 X 4 and 15 X 4. The selected internal

135 points are (/3, w/3), (1/3,2/3), (7/2, 7/2), 2/3, 7/3) and (277/3,27/3).
The proposed method also performs much better than the standard BEM and
similar remarks as mentioned in Example 2 apply. With 8 = 7, the error norms
of the boundary solution and the internal solution are displayed in Figure 5 and

624 Table III, respectively. The rates of convergence of the boundary solution are of
O %1%, O(h **®) and O *™) for linear, quadratic and IRBFN interpolations,

gf;’é;& " wror  Boundary points 5% 4 7x 4 9 4 11x4

N.s of th .

iternal colution Linear 2.96¢ — 2 1250 — 2 690¢ — 3 430¢ — 3

obtained by the Quadratic 2.80e — 3 590e — 4 1.82¢ — 4 7.66e — 5

BEM Wlth different IRBEN 1.27¢ — 5 479 — 7 149¢ — 7 340e — 8

interpolation Note: The IRBFN-BEM yields a solution more accurate than the linear/ quadratic-BEM by

techniques several orders of magnitude
10°
Key
O IRBFN
4 O quadratic
1075 | A linear / 3
107 b .
=
10° o! .
O
10* £ E
QO

Figure 5.

Example 3 — error norm 5

N, of the boundary 10 e ' 10°

solution versus h

boundary point spacing
h obtained from the BEM
with different
interpolation techniques

Note: With the given boundary point densities of 9 x 4, 11 x 4, 13 x 4 and 15 x 4, the rate of convergence
appears to be O(h*'#), O(h'3®) and O(h*®) for linear, quadratic and IRBFN interpolations, respectively,
as depicted by solid lines. The proposed method achieves accuracy and convergence rate superior to the
element-based method



respectively. At & = 0.07, which corresponds to the boundary point density of
15 X 4, the achieved error norms are 3.91¢ — 2, 2.79¢ — 2 and 6.88¢ — 5 for
linear, quadratic and IRBFN interpolations, respectively. The accuracy of the
internal solution by the present method is also better, by several orders of
magnitude, than the ones by linear and quadratic BEMs. Furthermore, the CPU
time requirements for the two methods are compared in Table IV. The

RBF
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structures of the MATLAB codes are the same and therefore it is believed that 625
the higher efficiency achieved by the IRBFN-BEM is due to the fact that the
number of segments (elements) used in the IRBFN-BEM is significantly less
than that used in the standard BEM, resulting in a better vectorised
computation for the former (MATLAB’s internal vectorisation).
4.2 Boundary geometry with curved and straight segments
NNs are employed to interpolate not only the variables # and ¢ by using
equations (21) and (22), but also the geometry of the curved segments by using
equations (23) and (24). All quantities in the Bls such as #, ¢ and dI' are
represented by IRBFNs necessarily in terms of the curvilinear coordinate
(arclength) s. Special attention is given to the transformation of the quantity dI’
from rectangular to curvilinear coordinates where the use of a Jacobian is
required as follows
5 o\ 1/2
ox ox
ar=( (=) +(= ds, (33)
0S as
in which the derivatives of x; and x5 on the segment I'; can be expressed in
terms of the basis function H (equation (6)) as
. Table III.
Boundary points 9Ix4 11 x4 13x4 15x 4 Example 3 — error
Linear 6.60c — 3 420e — 3 290¢ — 3 2.20e — 3 e é}’ssof’jti‘g
Quadratic 3.25¢ — 4 1.74e — 4 7.84¢ — 5 409 — 5 obtained by the
IRBFN 279 — 6 191e — 6 797e — 7 9.64¢ — 7 BEM with different
Note: The IRBFN-BEM yields a solution more accurate than the linear/quadratic-BEM by interpolation
several orders of magnitude techniques
Linear-BEM IRBFN-BEM
Mesh Boundary solution Total solution Boundary solution Total solution Table IV.
9%9 198 457 2.07 219 Example 3 - CPU
times (s) used to
11 x11 3.02 8.39 3.08 3.27 .
obtain the boundary
13x 13 4.29 13.88 4.27 4.63 solution and the
15 %15 5.78 21.56 5.70 6.33

Note: The code is written in the MATLAB language (version R11.1 by The MathWorks, Inc.),
which is run on a 548 MHz Pentium PC. Note that MATLAB language is interpretative

total solution by the
linear-BEM and
IRBFN-BEM
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Figure 6.

Example 4 — geometry
definition and training
points

mj+2
D~ N W HO ), (34)
oS | EAVE
1+2
My TN iy i)

Clearly, these derivatives can be calculated straightforwardly, once the
interpolation of the function is done after solving equations (23) and (24).
For more details covering the calculation of derivative functions by IRBFNs,
the reader is referred to Mai-Duy and Tran-Cong (2002). Normally, the orders of
IRBFN approximation for the boundary geometry and the variation of # and ¢
are chosen to be the same. However, they can be different and are discussed
shortly.

4.2.1 Example 4. Consider the boundary value problem governed by the
Laplace equation

Viu =0

as shown in Figure 6. The domain of analysis is one quarter of the ellipse and
the boundary conditions are

Xy (a) Coarse density
B
5
X1
o 10 A
X (b) Fine density

X1




u=20,
on OA and BO and

ou a®— b2

— = Xy,
an (@%3 + biat? 1

on AB with ¢ and b being the half lengths of the major and minor axes,
respectively. This problem with ¢ =10 and b =5 was solved by quadratic
BEM (Brebbia and Dominguez, 1992) using five and ten quadratic elements
with two selected internal points (2, 2) and (4, 3.5). For the present method, the
boundary is divided into three segments (two straight lines and one curve) and
the training points are taken to be the same as the boundary nodes used in the
case of the quadratic BEM. Thus, the densities are 5, 5 and 3 on segments OA,
AB and BO, respectively, which corresponds to the case of five quadratic
elements and densities 9, 9 and 5 corresponding to the case of ten quadratic
elements. In order to compare the present results with the results obtained by
quadratic BEM (Brebbia and Dominguez, 1992) and the exact solution, some
values of the function u are extracted and the errors obtained by the two
methods are displayed in Tables V and VI, which show that the present method
yields better accuracy. For example, with four digit scaled fixed point, for the
coarse density the range of the error is (0.02-0.2 per cent) and (0.84-2.32 per cent)
for IRBFN-BEM and quadratic BEM, respectively, while for the fine density the
error range 1s (0.00-0.02 per cent) and (0.02-0.14 per cent) for IRBFN-BEM and
quadratic BEM, respectively.

4.2.2 Example 5. The distribution of the function # in an ellipse with a
semi-major axis ¢ = 2 and a semi-minor axis b = 1 is described by

V= -2, (36)

subject to the condition # = 0 along the boundary I'. The exact solution is

¥ xZ
u(xy, x0) = _0'8<a_§ +b—§ - 1).

Exact IRBFN-BEM Quadratic BEM
X1 Xo u u Error (per cent) u Error (per cent)
8814 2362 —12.489 —12514 0.20 —12.779 2.32
6.174 3933 —14.570 —14.579 0.06 —14.839 1.85
3304 4719 —9.356 —9.354 0.02 —9435 0.84
2,000  2.000 —2.400 —2.404 0.17 —2431 1.29
4000  3.500 —8.400 —8413 0.15 — 8472 0.86

Note: Comparison of the error obtained by the present IRBFN-BEM (B8 = 7) and the quadratic
BEM using the same boundary nodes (five quadratic elements)
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Table V.
Example 4 —
comparison (five
quadratic elements)
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Table VI.
Example 4 —
comparison (ten
quadratic elements)

This problem is governed by the Poisson’s equation and hence the BEM with
PS can be applied here for obtaining the numerical solution. The solution # can
be decomposed into a homogeneous part #'! and a PS part «" as

u=u+ub.
The PS to equation (36) can be verified to be

p_ X+
2

while the complementary one satisfies the Laplace’s equation V2! = 0 with
the boundary condition #! = —u«® on I'. The latter is to be solved by BEM.
Partridge et al (1992) used this approach to solve the problem in which 16
linear boundary elements are employed and the solution obtained was
displayed at seven internal points. In the present method, the boundary I is
divided into two segments as shown in Figure 7. Four data densities, namely
9% 2, 11x2, 13X 2 and 15X 2, and B = 8 are employed to simulate the
problem. Error norms of the boundary solution obtained are 0.0105, 0.0037,
9.4436e — 4 and 5.8135¢ — 4 for the four densities, respectively, with the
convergence rate achieved being ON 9289 where N is the number of
the training boundary points employed (Figure 8). In order to compare with
the linear BEM (Partridge et al, 1992), the solution at seven internal points is
also computed by the present method and the corresponding error norms
obtained are 0.0063, 0.0026, 8.0387¢ —4 and 3.4900e — 5 for the four
densities, respectively. Hence with the coarse density of 9Xx2 that
corresponds to 16 linear boundary elements, the present method achieves
the error norm of 0.0063, while the linear BEM achieves only N. = 0.0109.
The latter number is calculated by the present authors using the table shown
in Partridge et al. (1992). Numerical result for the finest density is displayed
in Table VII.

4.2.3 Interpolation for geometry and boundary variables. In the last two
examples, the IRBFN interpolations for the geometry and the variables «# and ¢

Exact IRBFN-BEM Quadratic BEM
X1 X9 u u Error (per cent) u Error (per cent)
8.814 2.362 —12.489 —12.487 0.02 —12.506 0.14
6.174 3.933 —14.570 —14.568 0.01 —14.576 0.04
3.304 4.719 —9.356 —9.355 0.01 —9.363 0.07
2.000 2.000 —2.400 —2.400 0.00 —2.399 0.04
4.000 3.500 —8.400 —8.400 0.00 —8.402 0.02

Note: Comparison of the error obtained by the present IRBFN-BEM (B8 = 7) and the quadratic
BEM using the same boundary nodes (ten quadratic elements)




have the same order, i.e. the training points used are same for both the cases. RBF
However, the order of IRBFN interpolation can be chosen differently for the interpolation of
geometry and the variables # and ¢ in order to obtain high quality solutions

with low cost as possible. The geometry is usually known and hence the boundary values
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Figure 7.

Example 5 — geometry

a x, definition, boundary
training points and
internal points.

o The boundary is divided
into two segments

(ma=x1=a x=0)

and (—a = x1=a,

Xo = 0)

Figure 8.
o 3 Example 5 — error norm
= 10°F o E N. of the boundary
: solution versus the
number of boundary
points N by the present
IRBFN-BEM. With the
4 given boundary point
densities of 9% 2, 11 X 2,
13 x 2 and 15 X 2, the
rate of convergence
appears as OV ~ >9%%9),
where N is the number of
5 ‘ , ‘ , , L the boundary points
10' 10° employed
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Table VII.
Example 5 — the
boundary solution
obtained by the
present
IRBFN-BEM using
the density of 15 X 2

number of training points for the geometry interpolation can be estimated. It is
emphasised that the size of the final system of equations only depends on the
order of IRBFN interpolation for the variables # and g and hence in the case of
highly curved boundary, it is recommended that the order of IRBFN
interpolation can be chosen higher for the geometry than for the variables #
and ¢q. The problem in the last example is solved again with the increasing
number of training points for the geometry interpolation. The density of
training points employed is 9 X 2 for the variables # and ¢ while they are 12 X 2
and 14 X 2 for the geometry. The solution is improved as shown in Table VIII.
For example, the error norm of the boundary solution decreases from 0.0105 for
the normal case (the same order) to 9.5093¢ — 4 and 8.2902¢ — 4 for the
increasing order of geometry interpolation.

5. Concluding remarks

In this paper, the introduction of IRBFN interpolation into the BEM scheme to
represent the variables in BIEs for numerical solution of heat transfer problems
is implemented and verified successfully. Numerical examples show that the
proposed method considerably improves the estimate of the Bls resulting in

Coordinates Exact Computed
X Xo Gradient ¢ Gradient ¢
1.997 0.056 —0.804 —0.802
1.950 0.223 —0.857 —0.859
1.802 0.434 —1.001 —1.000
1.564 0.623 —-1.177 —-1.178
1.247 0.782 —1.347 —1.347
0.868 0.901 —1.483 —1.483
0.445 0.975 —1.570 —1.570
0.000 1.000 —1.600 —1.600

Note: Although no symmetry condition was imposed in the numerical model, the results
obtained are accurately symmetrical. Owing to symmetry, the displayed results corresponds to
only a quarter of the elliptical domain

Table VIII.
Example 5 — error
norms obtained by
the present method
with increasing
order of the IRBFN
interpolation for the
geometry

N, 9% 2 12x%x2 14 %2
Boundary solution 0.0105 9.5093¢ — 4 8.2902¢ — 4
Internal solution 0.0063 1.5961e¢ — 4 9.8966¢ — 5

Note: The densities of IRBFN interpolation are 9 X 2 for the boundary variables and 9 X 2,
12 X 2 and 14 X 2 for the geometry




better solutions not only in terms of the accuracy but also in terms of the rate of
convergence. The CPV integral is written in the non-singular form where the
standard Gaussian quadrature can be applied while the weakly singular
integrals are evaluated by using the well-known numerical techniques as in the
case of the standard BEM. The method can be extended to problems of viscous
flows which will be carried out in future work.
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